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Abstract.

Objective: Depression is a prevalent mental health disorder that significantly

impacts well-being and quality of life. This study investigates the relationship

between depression and cardiovascular function, exploring time-series features derived

from electrocardiogram (ECG) and photoplethysmogram (PPG) data as potential

biomarkers for depression prescreening.

Approach: As part of a comprehensive psycholinguistic experiment, we collected

data from 60 individuals, including both healthy participants and those with varying

levels of depression, assessed using the Beck Depression Inventory-II (BDI-II) and the

Patient Health Questionnaire-9 (PHQ-9).

Bimodal features derived from both ECG and PPG data were used to develop

machine learning models for depression risk classification, employing classifiers such as

Random Forest, XGBoost, Logistic Regression, and Support Vector Machines (SVM).

Additionally, regression models were built to predict depression severity based on ECG-

and PPG-derived biomarkers.

Main Results: Key findings indicate that short-term variability (SD1) features in

the ECG RR interval, peripheral systolic and diastolic phases from the PPG, and pulse

duration significantly differ between healthy individuals and those at risk of depression.

SVM achieved the best classification performance, with an AUROC of 0.83 ± 0.11

for BDI-II-based classification and 0.78 ± 0.11 for PHQ-9-based classification. SHAP
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analysis consistently identified systolic-SD1 and RR-SD1 as key predictors. Regression

analysis further supported the role of cardiovascular features in assessing depression

severity, yielding a mean absolute error (MAE) of 10.18 for BDI-II and 5.27 for PHQ-9

score regression.

Significance: This study demonstrates the feasibility of using wearable ECG

and PPG technologies for depression prescreening. The findings suggest that

cardiac activity-based biomarkers can contribute to the development of cost-effective,

objective, and non-invasive tools for mental health assessment, complementing

traditional diagnostic methods.

Keywords: Depression, Electrocardiogram, Photoplethysmogram, Cardiovascular

timing, Heart rate variability, BDI-II, PHQ-9.

1. Introduction

Mental health disorders, such as depression, are a significant global concern, with

approximately 5% of adults worldwide suffering from this condition [1]. In the United

States alone, it is reported that suicide, which is associated with depression in the

majority of cases, claimed 49,476 lives in 2022, equating to one death every 11

minutes [2]. Despite the critical need for effective mental health assessments, traditional

methods such as self-reported questionnaires and clinical interviews can potentially be

limited by biases, underreporting, and a reliance on conscious self-reflection. These

limitations hinder their ability to predict and address depression and suicidality reliably.

To address this challenge, the development of objective, reliable, accessible, and

affordable mental health assessment tools has become essential. Such technologies

can enable earlier and possibly more reliable detection and intervention, particularly

in underserved or resource-limited settings. Advances in biosensing technologies,

when combined with artificial intelligence, hold the potential to revolutionize mental

health assessments by evaluating autonomic nervous system activity, preconscious and

subconscious mental processes.

Cardiovascular dynamics have been correlated with mental health disorders,

particularly depression, suggesting that cardiovascular signal characteristics may be

potentially useful for prescreening depression, both at rest and in response to stress and

fatigue [3–5].

Metrics such as heart rate variability (HRV) and heart rate fragmentation (HRF),

which quantify variations in the time intervals between heartbeats, have emerged as

robust indicators of mental health [6, 7]. Although cardiovascular biomarkers are not

specific to depression and may be influenced by cardiovascular conditions, studies have

shown that individuals with depression and anxiety exhibit lower HRV compared to

healthy controls, reflecting autonomic nervous system dysregulation [8,9]. HRV metrics

have also been found to correlate with depression severity and treatment response,

highlighting their potential as tools for monitoring therapeutic progress [10].
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Previous studies indicate that HRV decreases significantly during acute mental

stress, accompanied by a shift toward sympathetic activation [11]. This association

has been observed across diverse demographic groups and varying levels of depression

severity, reinforcing the potential of HRV and HRF as promising physiological markers

of mental health [12]. Despite these advances, the relationship between heart rate

dynamics, stress reactivity, and depression remains an area of active investigation [13,

14].

Traditional cardiac monitoring relies on electrocardiogram (ECG) recordings, but

advancements in wearable technology have facilitated the use of other modalities, such

as photoplethysmogram (PPG), as complementary methods for capturing cardiovascular

activity [15, 16]. Together, ECG and PPG provide a complementary view of the

heart and vascular system, with ECG capturing electrical activity and PPG measuring

peripheral blood flow dynamics. These methods facilitate the extraction of features

such as wave morphology, inter-modal timings between the electrical impulses in the

ECG, and peripheral systolic/diastolic responses captured by PPG, as well as metrics

like pulse arrival time, providing insights into cardiovascular and autonomic function

beyond heart rate, HRV, and HRF [17,18].

This study explores the predictive value of ECG and PPG data in prescreening

depression and suicidality. The data was collected as part of the Preconscious

Signal Compilation for Robust and Individualized Belief Evaluation (PRESCRIBE)

project, which explored the relationship between psycholinguistic stimuli (vignettes

displayed on a screen) and physiological responses to identify biomarkers for depression

and suicidality. The study involved individuals diagnosed with major depressive

disorder (MDD) and individuals without a current diagnosis, who underwent extensive

psychological prescreening followed by a psycholinguistic experiment with simultaneous

multimodal physiological data collection.

This research focuses on leveraging ECG and PPG data from PRESCRIBE to

develop accessible, wearable technologies for preliminary mental health assessments

outside clinical settings. These tools could support early detection and facilitate timely

referrals for individuals at risk of depression. Despite their simplicity and accessibility,

we demonstrate that ECG and PPG have strong potential as cost-effective, reliable

methods for prescreening mental health conditions.

In Section 2, an overview of the PRESCRIBE study design is provided,

including signal recording procedures, participant demographics, and questionnaire-

based depression assessments. Section 3 details our methodology for analyzing the

ECG and PPG, emphasizing cardiac activity time intervals and their transformation

into bimodal cardiac features for machine learning. In Section 4, we present our

findings, statistical analyses, and the machine learning models used to evaluate the

predictive accuracy of the cardiac biomarkers for depression. Finally, Sections 5 and 6

discuss the implications of the findings for depression prescreening, their contribution

to current research, and future directions for integrating this technology into mental

health evaluations.
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2. Study Design

PRESCRIBE was conducted under the DARPA Neural Evidence Aggregation Tool

(NEAT) program [19, 20], which aimed to transform mental health assessment by

integrating advances in neuroscience, biosensing, and artificial intelligence. The

PRESCRIBE project was specifically designed to leverage psycholinguistic stimuli

and multimodal physiological sensing to detect preconscious processes associated with

symptoms of depression and suicidality. This collaborative effort included Charles River

Analytics, Tufts University, Georgia Institute of Technology (Georgia Tech), and Emory

University. The cardiovascular data used in the current study were collected at the

Emory and Georgia Tech sites. The study was approved by the Institutional Review

Boards (IRBs) at Emory and Georgia Tech and the Navy’s Human Research Protection

Office (HRPO). All subjects provided written informed consent prior to participation.

For a full overview of the study protocol, see [21].

2.1. Participants and Psychological Prescreening

Participants were recruited to Emory University and Georgia Tech through public

announcements, including flyers and digital platforms, via a two-step process. Initially,

volunteers were remotely evaluated against IRB-approved inclusion and exclusion

criteria, and eligible volunteers provided written consent to participate in the study.

Inclusion criteria required participants to be aged 18 to 75 with over 50% exposure

to English before age five. They needed to either meet the diagnostic criteria for Major

Depressive Disorder (MDD) or be healthy controls with no current psychiatric diagnosis.

Exclusion criteria included positive pregnancy tests or breastfeeding, inadequate

English exposure, history of meningitis or traumatic brain injury, significant substance

use disorders, head trauma with loss of consciousness over one minute, recent

benzodiazepine or opioid use, history of cardiovascular diseases, and several specific

psychiatric conditions. Individuals with cognitive impairments or non-English speakers

were also disqualified.

Eligible participants completed psychological questionnaires remotely (for Emory)

or in person (for Georgia Tech), with healthy controls primarily sourced from the local

communities surrounding Georgia Tech and Emory University (Midtown Atlanta, GA,

USA). MDD participants were recruited from Emory’s psychiatric outpatient clinic.

All participants underwent assessments using the Beck Depression Inventory-II (BDI-

II) [22], and Patient Health Questionnaire-9 (PHQ-9) [23], to evaluate depressive

symptomatology. Emory participants additionally completed a structured evaluation

through the Mini-International Neuropsychiatric Interview (MINI) for psychiatric

conditions [24], ensuring compliance with inclusion criteria.

After prescreening, participants were scheduled for data collection sessions.
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2.2. Experimental Procedure

Tufts University designed a psycholinguistic experiment using PsychoPy [25,26], which

Georgia Tech and Emory modified to simultaneously collect multimodal physiological

data. During data collection, participants read vignettes on a computer screen, displayed

either one word or one sentence at a time. The vignettes varied in predictability and

emotional tone. Two types of stimuli were used: self-relevant (SR), exploring mental

health beliefs in the first person, and non-self-relevant (NSR), serving as neutral controls

in the third person. Neural and physiological responses were time-locked to the onset

of a critical word, always the last word of the vignette.

Participants sat in a quiet room wearing the sensor suite described below. Each

session began with a short baseline recording (only at Emory) to help participants

adjust and capture resting-state data. Trials were organized into eight 40-trial blocks,

with short breaks for rest and device recalibration. PsychoPy managed stimulus

presentation and response recording. The stimuli included periodic yes-no questions to

assess engagement. Using their right hand, participants operated a three-button keypad

labeled YES, NO, and GO (for block transitions). Button positions were randomized

across subjects to mitigate left-right-button click biases. Participants were instructed

to maintain gaze on the screen and minimize movement to improve data quality and

reduce errors in eye-tracking and pupillometry.

A multimodal sensor suite captured physiological and neurophysiological signals, in-

cluding electrocardiogram (ECG), photoplethysmography (PPG), electroencephalogram

(EEG), respiration, seismocardiogram (SCG) via triaxial accelerometers, electrodermal

activity (EDA), continuous blood pressure, and eye tracking. EEG was recorded using

the BioSemi system, eye movements and pupil dilation with the EyeLink 1000 Plus sys-

tem, and other physiological data with a Biopac MP160 device. ECG was recorded using

a three-lead chest configuration with a wireless BioNomadix module (BIOPAC Systems

Inc.), with two electrodes across the heart and a reference lead on the hip. PPG data

were collected from the ring finger of the left hand using the Berry reusable SpO2 sen-

sor (BerryMedical Inc.), ensuring no interference with keypad use. Both signals were

sampled at 2 kHz.

The synchronization of stimulus presentation and physiological data collection was

accomplished using precise triggers sent from a computer running PsychoPy to the

acquisition systems. This ensured accurate alignment between the timing of stimuli

and the recorded physiological signals. Data from the Biopac system were recorded in

real-time with AcqKnowledge software and saved for later processing.

Session durations ranged from 74 to 180 minutes, averaging 120±22 minutes, with

variations due to preparation time, practice, response speed, and inter-block breaks.

Each block lasted 6 to 22 minutes, with an average duration of 11.4±2.4 minutes.

While the psycholinguistic environment may have influenced physiological

responses, this study focuses on the BDI-II and PHQ-9 depression scores, and the ECG

and PPG data only, due to their non-invasiveness, cost-effectiveness, and potential for
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Table 1: Demographics of the study participants (N = 60) along with their breakdown

by BDI-II and PHQ-9 scores.

Variable Category Frequency Percentage (%)

Gender
Male 29 48

Female 31 52

Age

20–30 yrs 30 50

31–40 yrs 13 22

41–50 yrs 9 15

51–70 yrs 8 13

BDI-II Score
Healthy: BDI-II≤13 29 48

Depressed: BDI-II≥14 31 52

PHQ-9 Score
Healthy: PHQ-9≤4 20 33

Depressed: PHQ-9≥5 40 67

portable monitoring. For further details regarding the other data modalities, see [21].

3. Method

3.1. Dataset

Data collected from 60 participants (32 from Emory and 28 from Georgia Tech) was used

in this study. The demographics of the study population are summarized in Table 1.

The cohort included 29 males (48%) and 31 females (52%). Thirty individuals were

between the ages of 20 and 30.

Participants were grouped by their risk of depression based on BDI-II and PHQ-

9 scores using the thresholds defined in Table 2. While various binary and multi-

label classification problems can be explored, here, we focused on distinguishing healthy

individuals—those with minimal depression (defined as BDI-II ≤ 13 or PHQ-9 ≤ 4)—

from those at risk of depression with varying severity levels (mild, moderate, or severe,

as listed in Table 2). Accordingly, based on BDI-II scores, n = 29 participants were

labeled as healthy and n = 31 as depressed. Using PHQ-9 scores, n = 20 participants

were labeled as healthy and n = 40 as depressed.

3.1.1. Concordance between BDI-II vs PHQ-9 Scores: Fig. 1 illustrates the scatter plot

of BDI-II and PHQ-9 scores per subject. The dots closer to the origin (in red) represent

healthier individuals, while the farther points (in blue) indicate greater depression score.

Although the Pearson coefficient is 0.90 (p-value ≤ 10−6) suggests general agreement,

discrepancies exist between the two instruments.

Given the definition of depression scores in Table 2, we also tested the monotonic

relationship between BDI-II and PHQ-9 scores of the participants. The rationale is

that if a subject A has a higher or equal BDI-II score compared to subject B, i.e.,
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Table 2: BDI-II and PHQ-9 depression severity categories [22,23,27] of the PRESCRIBE

participants.

Scale Score Range Depression Severity Frequency

BDI-II [22]

0–13 Minimal 29

14–19 Mild 4

20–28 Average or Moderate 12

29–63 Major or Severe 15

PHQ-9 [23]

0–4 Minimal 20

5–9 Mild 14

10–14 Moderate 11

15–19 Moderately severe 9

20–27 Severe 6

BDI-II(A) ≥ BDI-II(B), then we expect the same ordering in their PHQ-9 scores,

PHQ-9(A) ≥ PHQ-9(B). This would ensure consistency between the two scoring

instruments, reflecting their expected correlation in assessing depression severity. To

assess this, we calculated Kendall’s and Spearman’s rank correlation coefficients to

evaluate the agreement in rankings [28]. A Kendall’s τ of 0.75 and a Spearman’s

correlation of 0.91 were obtained (both with p-values ≤ 10−6). This confirms a

significant yet imperfect positive correlation in rankings between BDI-II and PHQ-9

scores. This finding is consistent with the literature on the sensitivity and specificity of

BDI-II [29] and PHQ-9 [30] in identifying depression, highlighting that these instruments

are not perfect. This underscores the need for multiple screening instruments and

highlights the complementary roles of BDI-II and PHQ-9 in evaluating depressive

symptoms. This discrepancy also impacts the “ground truth” in machine learning

analyses, which use these scores to label the subjects.

3.2. Data Analysis

Fig. 2 summarizes the data analysis steps. Each step is detailed below.

3.2.1. Preprocessing: Baseline wander in the ECG and PPG channels was corrected

using a two-stage filtering approach [31–33], consisting of a moving median filter (1 s for

ECG, 4 s for PPG) followed by a moving average filter (0.5 s for ECG, 2 s for PPG). To

eliminate 60Hz power-line interference, a second-order IIR notch filter with a Q-factor

of 45 was applied to the ECG using zero-phase forward-backward filtering. The PPG

signals did not contain any interference; no additional filtering was required.

3.2.2. R-peak detection: To detect ECG R-peaks, we used an efficient R-

peak detector from the open-source electrophysiological toolbox (OSET) [34]

(peak det likelihood long recs.m). This R-peak detector, inspired by the Pan-
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Figure 1: Scatter plot of BDI-II and PHQ-9 scores [22, 23], for 60 participants color-

coded by distance from the origin, with thresholds for healthy and depressed groups

as defined in Table 2. The Pearson coefficient is 0.90, the Kendall τ is 0.75 and the

Spearman rank coefficient is 0.91.
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Figure 2: Signal processing block diagram for extracting fiducial points and features

from ECG and PPG data

Tompkins algorithm [35], applies a bandpass FIR filter, followed by hyperbolic tangent

amplitude saturation to mitigate spike noise and motion artifacts. The power envelope is

then computed using a sliding window, and R-peaks are detected as local maxima within

adaptive windows based on heart rate, and corrected by multiple rule-based heuristics

on ECG share, amplitude and rhythm. The function has been specifically optimized for

long recordings.
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3.2.3. PPG enhancement: To reduce artifacts and noise in the PPG, we applied a

bandpass filter with a passband of 1–20Hz, followed by an enhancement step for the

dicrotic notch (DN) as proposed in [36], which is provided in OSET [34]. The DN

serves as a crucial reference point for identifying peripheral systolic and diastolic events.

However, it is not always visible in the raw PPG and requires enhancement. We created

a DN enhancer inspired by [37]. This method applies a high-pass filter with a signal-

dependent cutoff frequency. To determine the cutoff, we sequentially applied a high-pass

filter with a cutoff frequency sweeping from 1Hz to 2Hz in 0.2Hz increments until the

output signal contained less than 25% of its total power in frequencies below 2Hz. To

prevent phase distortion and preserve signal fidelity, we employed forward-backward

filtering.

While this filter can generally be implemented adaptively and in real-time, our

analysis was conducted offline. Therefore, we determined a single high-pass cutoff

frequency for each PPG record (participant). This DN enhancement method has

demonstrated robust performance, as validated on a large dataset [37]. Additionally, we

reviewed each record by visual inspection to ensure its accurate performance for each

participant.

3.3. ECG-PPG Fiducial Point Extraction

Accurate fiducial point detection is crucial for ECG beat annotation and cardiac time

interval extraction. We implemented robust algorithms for this purpose, as detailed

below.

3.3.1. ECG Fiducial Point Detection: Our primary ECG waveforms of interest—P-

wave, QRS complex, and T-wave—are used to derive cardiovascular events, as illustrated

in Fig. 3. To extract these waveforms, we implemented an algorithm based on the Latent

Structure Influence Model (LSIM) to identify the onset and offset of the QRS complex

and T-wave [38, 39]. Referred to as the LSIM-FD block in Fig. 2, this algorithm takes

the ECG and R-peaks as inputs and outputs the fiducial points. The source codes for

this LSIM-based fiducial detection algorithm is provided in OSET [34].

After extracting the beat-wise fiducial points, we calculated several key ECG-based

intervals: P-wave width, QRS complex width, T-wave width, PQ interval, PT interval,

QT interval, and RR interval. These beat-wise parameters resulted in time-series for

each parameter, across each data collection session.

3.3.2. PPG Fiducial Point Detection: The following PPG-based fiducial points were

extracted: peripheral systolic onset (ON), peripheral systolic peak (SP), and the dicrotic

notch (DN), as shown in Fig. 3. Since ECG and PPG data were recorded simultaneously,

PPG beats were segmented using the ECG R-peak as a reference (Fig. 2). For fiducial

point detection, we adapted methods from PyPPG and PPGFeat [40, 41], modifying

them to use the ECG R-peak for beat segmentation. Accordingly, the most dominant
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Figure 3: Illustrations of ECG and PPG fiducial points and their bimodal inter-

relationship

PPG peak between consecutive ECG R-peaks was identified as the peripheral systolic

peak. The onset was determined as the deepest valley between the R-peak and

the systolic peak, and the DN was found as a local minimum between the systolic

peak and the next R-peak. Our PPG delineator is implemented as the function

fiducial det ppg.m in OSET [34].

After identifying the PPG fiducial points, we derived four key beat-wise time

interval series: the systolic interval, diastolic interval, pulse interval, and systolic peak

time, as illustrated in Fig. 3.

3.3.3. Bimodal Time Intervals: With the ECG and PPG fiducial points synchronized

based on the R-peak, we derived hybrid bimodal intervals, such as Pulse Arrival Time

(PAT) [17,18,42,43]. PAT represents the time taken for a pulse wave to travel from the

heart to a peripheral site, such as the fingertip, where the PPG is recorded. We focused

on two specific PAT measurements: the interval between the ECG R-peak and the PPG

onset (PATfoot) and the interval between the ECG R-peak and the PPG systolic peak

(PATpeak), as shown in Fig. 3.

3.4. Feature Dynamics and Poincaré Representations

The detailed fiducial point extraction algorithms provide multiple beat-wise time-series

features. These features can be used to derive various time, frequency, and statistical

characteristics from the ECG and PPG [44]. Motivated by research on HRV/HRF and

their relationship with depression, we focus on simple, interpretable features that can

facilitate further exploration of the dynamics of cardiac biomarkers in connection with
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(a) RR Interval (b) Systolic Interval (c) Diastolic Interval

Figure 4: Poincaré plots for all (410,000) heartbeats across all subjects. Blue and red

contours show the 75th percentiles for healthy and depressed individuals based on BDI-

II scores. ‘x’ markers denote average of each group.

depression. To achieve this, we emphasize the Poincaré representation of the extracted

intervals, highlighting its clinical relevance and simplicity [45,46].

The Poincaré plot of RR intervals is a graphical representation of heart rate

variations, depicting each RR interval versus the previous RR interval [47], also referred

to as the phase space in dynamic system analysis. Herein, we extend the concept of

Poincaré plot analysis to all time intervals extracted from the ECG and PPG. Fig. 4

shows the Poincaré plots for RR, systolic, and diastolic intervals across all heartbeats

for our study participants, grouped by their BDI-II scores. Further details are provided

in the Results.

Quantitatively, Poincaré plots can be characterized by their spread along the major

and minor axes of the scatter plot. For a time interval of interest xn (n = 1, . . . , N),

denoting each point in the two-dimensional Poincaré plot as x = [xn, xn−1]
T , the

covariance matrix of the phase space scatter can be expressed as:

Cx = σ2
x

[
1 ρ

ρ 1

]
(1)

where σ2
x =

∑N
n=1(xn − x̄)2/N is the sample variance, x̄ = (

∑N
n=1 xn)/N is the sample

mean, and ρ =
∑N

n=1(xn− x̄)(xn−1− x̄)/(Nσ2
x) is the correlation coefficient between the

successive samples of xn. We can show that the square root of the minor and major

eigenvalues of Cx, denoted by SD1 and SD2, respectively, are:

SD1 = σx

√
(1− |ρ|), SD2 = σx

√
(1 + |ρ|) (2)

Due to the way the Poincaré plots are formed, the sample scatters are symmetric

around the diagonal (excluding the very first and last sample points); therefore, the

major eigenvector of Cx aligns with the identity line, and the minor eigenvector is

perpendicular to the identity line. SD2 (scatter along the identity line) has been
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associated with long-term variability, while SD1 (scatter perpendicular to the identity

line) has been linked to short-term variability, both of which link to autonomic regulation

mechanisms [46]. SD1 and the root mean square of successive differences (RMSSD),

which is common in ECG analysis, are equivalent metrics [48]. In Appendix A, we

derive the relationship between ρ and the spectrum of the time series xn, showing the

relationship between the HRV spectrum and Poincaré plots.

In summary, the ECG and PPG processing yielded 13 beat-wise time intervals:

seven ECG-based, four PPG-based, and two hybrid bimodal intervals, represented as

beat-wise time series across each session. For subsequent machine learning, each time

series was further summarized into four features over 1-minute intervals: the median,

SD1, SD2, and ρ, resulting in 52 features per 1-minute period for each subject.

4. Results

4.1. Feature Visualization

Before presenting the quantitative results, we begin by visualizing some of the key

features of healthy and depressed individuals.

4.1.1. Poincaré Plots: Fig. 4 illustrates Poincaré plots for subjects with a BDI-II score

below 14 (red) and those with a score equal to or above 14 (blue) for RR, systolic and

diastolic intervals across 410,000 heartbeats from all participants. The solid blue and red

lines represent the 75th percentile contours for each group, while the markers indicate

the average values for each group. The contour plots suggest differences between the two

groups; however, quantitative analysis is required to confirm the statistical significance

of these differences (as presented later). The average RR interval for the healthy group

is 841ms, whereas for the depressed group, based on the BDI-II score, it is 757ms. This

indicates that the depressed group has a lower RR interval, reflecting a higher heart

rate.

According to Fig.4, the SD1 features, which characterize short-term variability in

RR, systolic, and diastolic intervals, show lower SD1 values for depressed individuals

across all three intervals. This indicates a decrease in short-term variability of heart

activity in this group. Notably, Fig. 4 aggregates Poincaré plot across all participants.

An individualized analysis of SD1 and SD2 across each subject is required to determine

the significance of the results.

4.2. Statistical Significance and Hypothesis Testing

To assess the differences between ECG- and PPG-derived features in healthy and

depressed groups, we conducted tests to determine whether these differences are

statistically significant. For each subject, we aggregated features by taking the median

of 1-minute features before running the statistical tests.
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Table 3: Kolmogorov-Smirnov (KS) and Wilcoxon Rank-Sum (WRS) tests identify

ECG-PPG features that significantly differ (p < 0.01) between healthy and depressed

subjects based on BDI-II and PHQ-9 labels. Statistically significant features are marked

with asterisks. AUPRC and AUROC indicate predictive power for classification (see

Section 4.4.1).

Analysis Signal Feature KS-test WRS-test AUPRC AUROC

BDI-II

ECG
RR-SD1* 0.0001 0.003 0.78 0.73

P wave-ρ 0.022 0.008 0.72 0.70

PPG

Pulse-SD1* 0.0001 0.003 0.77 0.73

Diastolic-SD1* 0.0001 0.008 0.77 0.70

Systolic-SD1* 0.024 0.008 0.67 0.70

Pulse-SD2 0.009 0.022 0.74 0.67

PHQ-9

ECG RR-SD1* 0.003 0.025 0.83 0.68

PPG

Pulse-SD1* 0.003 0.021 0.83 0.68

Diastolic-SD1* 0.003 0.038 0.83 0.67

Systolic-SD1* 0.003 0.003 0.87 0.74

Systolic-ρ 0.006 0.014 0.82 0.70

We use nonparametric statistical methods for hypothesis testing, avoiding

assumptions about sample distributions. Specifically, we employ the Kolmogorov-

Smirnov (KS) test and the Wilcoxon Rank-Sum test [49, 50]. The KS test evaluates

overall distribution differences without assuming a specific distribution, while the

Wilcoxon Rank-Sum test assesses rank-based median differences.

Table 3 summarizes the statistically significant features identified under an alpha

level of 0.01 for groups defined by BDI-II and PHQ-9 scores. The significance of these

features is determined using at least one of the two statistical tests.

For both BDI-II-based and PHQ-9-based groups, the SD1 features of RR,

systolic, pulse duration, and diastolic intervals exhibit significant differences between

the healthy and depressed groups. Table 3 also highlights the significance of the

correlation coefficient (ρ) for the P-wave duration interval, indicating that ECG-based

morphological characteristics, particularly those related to atrial activity, may provide

valuable insights into group differences. Additionally, Table 3 shows that the feature

ρ for the systolic interval is significant for the PHQ-9-based grouping, suggesting that

systolic interval variability also contributes meaningfully to classifying these groups.

4.3. Low-Dimensional Feature Visualization

According to Table 3, six ECG- and PPG-based features were identified as significant

for the BDI-II-based grouping and five for the PHQ-9-based grouping. We use Principal

Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE)
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Figure 5: Two-dimensional PCA projection and t-SNE embedding of the significant

features from Table 3, for healthy (red) and depressed (blue) groups based on BDI-II

and PHQ-9 scores.

to visualize these features in two dimensions in an unsupervised manner (without

considering labels). PCA aims to minimize reconstruction error in the low-dimensional

space, while t-SNE preserves local relationships by computing pairwise similarities and

embedding the data into a lower-dimensional space [51], both independent of labels.

Fig. 5a and Fig. 5b display the PCA- and t-SNE-based two-dimensional projections

of the average subject-wise features (60 subjects), visually illustrating the separability

of healthy and depressed individuals in BDI-II-based projections. Fig. 5c and Fig. 5d

show PHQ-9-based projections, where the separation is less distinct, suggesting weaker

differentiation. Notably, the two-dimensional projections are not linearly separable,

highlighting the need for more advanced machine-learning techniques for classification.

4.4. Healthy vs Depressed Classification

To assess the discriminative capability of the features identified in Table 3, we study

various machine learning models to distinguish between healthy and depressed groups,

as well as their levels of depression severity, based on BDI-II and PHQ-9 scores outlined

in Table 1.

4.4.1. Basic Feature Thresholding: As a preliminary attempt, we use basic feature

thresholding on the features listed in Table 3 to classify healthy versus depressed
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individuals. While this is a basic approach, it requires no training and provides insights

into the usefulness of each individual feature and their ranking [52,53], setting a baseline

for comparison with more advanced machine learning models. The procedure is similar

to a standard detection problem: for each individual, we average their ECG/PPG-

based features across their entire record. Next, we sweep a threshold ranging from

the minimum to the maximum of each feature and associate lower/higher values with

the healthy/depressed groups. At each decision level, we count the correctly assigned

healthy and depressed labels. This provides us with data points for standard receiver

operating characteristic (ROC) and Precision-Recall (PR) curves for each individual

feature [54].

The area under the ROC curve (AUROC) and area under the PR curve (AUPRC)

for each individual feature is reported in the last two columns of Table 3. The

corresponding ROC and PR curves are also illustrated with faint colors in Fig. 6.

Accordingly, RR-SD1 yields the highest AUROC of 0.73 for BDI-II-based grouping,

while Systolic-SD1 achieves the highest AUROC of 0.74 for the PHQ-9-based grouping.

These results set baselines for comparison of more advanced machine learning models

that involve training.

4.4.2. Classification Results: Next, we test standard classification schemes involving

training and validation, including Random Forest (RF), XGBoost (XGB), Logistic

Regression (LR), and Support Vector Machine (SVM). We apply a stratified subject-wise

5-fold cross-validation procedure with depressed-healthy stratification based on BDI-II

and PHQ-9 scores to maintain consistent healthy-to-depressed ratios in both training

and test folds while ensuring that no subject appears in both sets.

For each feature, the lower and upper 5th quantiles of the 1-minute features are

clipped at the 5th quantiles to mitigate the effects of outliers. A key challenge is the

variable length of records (i.e., the number of 1-minute features per subject). To address

this, during training, we use a balanced sampling approach, randomly subsampling 1-

minute features per subject to match the subject with the fewest available samples,

ensuring equal representation of subjects in the training set.

Each classification model undergoes hyperparameter optimization using nested

stratified group 4-fold cross-validation on the training set, allocating 25% of the training

set for nested validation and 75% for nested training. A grid search over the set

of hyperparameters listed in Table 4, with stratified subject-wise cross-validation,

maximizes the AUROC score while preventing overfitting.

The cross-validation process is repeated 10 times with different random seeds to

mitigate any biases due to initial conditions across training and test folds. Performance

metrics are calculated on the test fold for each repetition, with means and standard

deviations reported across all ten repetitions. The average ROC and PR curves are

generated using the test set for all classifiers.

Fig. 6a and Fig. 6b show the overlaid ROC curves for all four models in BDI-II and

PHQ-9 classification. Accordingly, for BDI-II-based classification, tree-based models
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Table 4: Hyperparameter search space for optimizing machine learning models.

Models Hyperparameters Search Space

LR C (regularization inverse) {0.001, 0.01, 0.1, 1, 10, 100}

SVM
Kernel type {‘linear’, ‘rbf’}
C (regularization inverse) {0.001, 0.01, 0.1, 1, 10, 100}

XGB

Number of trees {10, 50, 100, 200}
Maximum depth {3, 5, 7, 10}
Observation subsampling {0.5, 1}
Feature subsampling {0.5, 1}

RF
Number of trees {10, 50, 100, 200}
Maximum depth {‘None’, 5, 10, 20}

(Random Forest and XGBoost) and SVM perform robustly, each achieving an average

AUROC above 0.81, while Logistic Regression (as a Generalized Linear Model) performs

slightly lower but remains acceptable. This suggests that both linear and non-linear

classifiers can effectively distinguish between groups, with non-linear methods offering

modest advantages.

For PHQ-9-based results, classification performance is generally lower in terms

of AUROC, with SVM attaining the highest AUROC of 0.78. Fig. 6c and Fig. 6d

further illustrate the PR curves, highlighting SVM’s strong performance, while LR’s

effectiveness declines as recall increases.

Table 5 presents the classification performance metrics for BDI-II and PHQ-9

scores, including AUROC, AUPRC, accuracy, sensitivity, specificity, and F1-score. The

operating points are selected to achieve 75% sensitivity on the training ROC plots, in

accordance with the performance milestones of the PRESCRIBE project.

For BDI-II scores, SVM achieved the highest AUROC and AUPRC, at 0.83± 0.11

and 0.86 ± 0.11, respectively. XGB demonstrated the highest accuracy (0.73 ± 0.09),

sensitivity (0.78 ± 0.19), specificity (0.68 ± 0.18), and F1-score (0.71 ± 0.10) at the

chosen operating point. XGB and RF had identical performance in terms of AUROC

(0.81± 0.12), both outperforming LR across all metrics.

For PHQ-9 scores, SVM again achieved the highest AUROC (0.78 ± 0.11) and

AUPRC (0.89± 0.08), followed closely by RF, which had an AUROC of 0.76± 0.12 and

the highest accuracy (0.73 ± 0.10). LR showed notably lower performance across all

metrics compared to the other models.

The substantial performance gap between all classifiers and the random chance

baseline confirms the discriminative power of our features, though this gap is more

pronounced for BDI-II than PHQ-9. A notable trend across all models is the

higher AUPRC and sensitivity but lower specificity for PHQ-9 classification compared

to BDI-II, suggesting that models trained on PHQ-9 scores are more effective at

identifying depression cases but also more prone to false positives. This difference
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Figure 6: ROC and PR curves for significant features (thin lines) based on BDI-II and

PHQ-9 groups from Table 3, along with the average ROC and PR curves of various

classifiers utilizing these features. The corresponding average operating points at a 75%

sensitivity threshold for the training set are indicated by markers of the same color with

black edges.

could be associated with the varying focus and structure of the BDI-II and PHQ-

9 questionnaires, with BDI-II potentially capturing depression aspects more strongly

reflected in cardiovascular measures. The F1-score further highlights this gap; for

instance, XGB’s F1-score decreases from 0.71±0.10 for BDI-II to 0.65±0.11 for PHQ-9.

This decline suggests that PHQ-9-based classification models may struggle more with

false positives or negatives, resulting in a less balanced trade-off between precision and

recall.

4.4.3. Classification Feature Importance: We conducted SHAP (SHapley Additive

exPlanations) analysis to rank feature importance across different classifiers for both

BDI-II- and PHQ-9-based depression assessments.

For the BDI-II-based classification task, the SVM with an RBF kernel, which

achieved the highest AUC score, identified Systolic-SD1 and P-wave ρ as the most
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Table 5: Classification performances for various models using BDI-II and PHQ-9 scores,

reported at a sensitivity threshold of 75% (on the training set). The best-performing

models are highlighted in bold.

Analysis Model AUROC AUPRC Accuracy Sensitivity Specificity F1-score

BDI-II

LR 0.72± 0.15 0.80± 0.13 0.64± 0.12 0.77± 0.16 0.52± 0.24 0.61± 0.13

SVM 0.83± 0.11 0.86± 0.11 0.72± 0.11 0.76± 0.18 0.67± 0.23 0.69± 0.13

XGB 0.81± 0.12 0.81± 0.14 0.73± 0.09 0.78± 0.19 0.68± 0.18 0.71± 0.10

RF 0.81± 0.12 0.81± 0.15 0.72± 0.10 0.78± 0.18 0.67± 0.21 0.70± 0.11

PHQ-9

LR 0.67± 0.14 0.85± 0.10 0.62± 0.13 0.74± 0.18 0.39± 0.29 0.53± 0.14

SVM 0.78± 0.11 0.89± 0.08 0.72± 0.13 0.78± 0.14 0.64± 0.27 0.68± 0.14

XGB 0.74± 0.12 0.87± 0.09 0.72± 0.10 0.80± 0.15 0.55± 0.24 0.65± 0.11

RF 0.76± 0.12 0.87± 0.09 0.73± 0.10 0.80± 0.14 0.59± 0.27 0.67± 0.13

influential features.

A similar pattern is observed in the PHQ-9 classification results. Systolic-SD1

remained the most prominent feature in the RBF-based SVM model, which achieved

both the highest AUROC and F1-score. This consistency across both depression metrics

(BDI-II and PHQ-9) reinforces the reliability of these features as potential biomarkers

for depression.

SHAP analysis further suggests that higher values (shown in red) of these key

features generally corresponded to an increased likelihood of depression classification,

particularly evident in the broader distribution patterns of systolic-SD1 and RR-

SD1. This aligns with previous discriminative power analyses, where both RR-SD1

and systolic-SD1 demonstrated strong statistical significance in distinguishing between

depressed and non-depressed individuals.

These findings suggest that a consistent subset of heart rate variability and heart

rate dynamics parameters—particularly systolic-SD1, RR-SD1, pulse-SD1, and P-wave

ρ—serve as reliable indicators of depression across different classification approaches

and assessment metrics.

In Appendix B, we further investigate the effectiveness of regression models in

predicting depression severity scores (BDI-II and PHQ-9) from ECG- and PPG-based

markers, where Random Forest demonstrates the best overall performance, though all

models exhibit a tendency to regression-to-the-mean effect [55].

5. Discussion

The results of this study provide compelling insights into the relationship between

cardiovascular activity-based features extracted from ECG-PPG and depression, using

BDI-II and PHQ-9 scores to label the participants. The statistical analysis and feature

visualizations highlight several key findings discussed below.

The Poincaré plots in Fig. 4 expand traditional RR interval analysis to include

systolic and diastolic intervals, showing significant differences between healthy (BDI-

II < 14) and depressed (BDI-II ≥ 14) groups. Notably, the group with depression
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Figure 7: SHAP summary plots of one-minute features showing feature importance

and impact across SVM classifier for BDI-II and PHQ-9 classification results. Colors

indicate feature values (red: high, blue: low), and SHAP values represent the impact

on model output, with positive values indicating an increased likelihood of depression

classification.

exhibited a lower average RR interval and a reduced phase-space scatter width (lower

SD1), which indicates a higher resting heart rate and decreased HRV. This aligns with

previous studies that have explored the relationship between depression and autonomic

dysregulation [56].

Based on Table 3, the significance of SD1 across various heart rate intervals in

distinguishing between healthy and depressed individuals underscores the importance

of short-term HRV as a potential biomarker for depression. This aligns with existing

research on autonomic nervous system dysfunction in depression, particularly reduced

parasympathetic activity [56]. The consistent identification of SD1 features across

both BDI-II and PHQ-9 groupings further supports the reliability of this metric as

a robust indicator of depressive states, independent of the specific assessment tool used.

Additionally, the ρ of P-wave in BDI-II analysis suggests that depression may impact

(or be correlated with) cardiac electrical conduction patterns.

PCA and t-SNE visualizations showed clear separation between healthy and

depressed groups, especially with BDI-II scores (Fig. 5a, Fig. 5b), reinforcing the

discriminative power of cardiac features. In contrast, PHQ-9 scores showed less distinct

separation (Fig. 5c, Fig. 5d), aligning with classification results (Table 5) and suggesting

a stronger link between BDI-II scores and cardiovascular activity.

The SHAP value analysis highlighted key features in classification. Systolic-SD1

emerged as the most important feature, particularly for SVM, in both BDI-II and PHQ-

9-based classifications, supporting its potential role in depression screening and aligning

with literature linking altered cardiovascular dynamics to depression [57]. RR-SD1

and Pulse-SD1 also consistently ranked as important in SVM for both classification

models, in line with research associating short-term HRV measures, such as SD1, with
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parasympathetic nervous system activity, which is often disrupted in depression [56].

The stronger association of cardiovascular features with depression symptoms

measured by BDI-II, compared to PHQ-9, suggests that BDI-II may be more sensitive

to the physiological aspects of depression, which aligns with previous studies [58].

The regression analysis presented in Appendix B, highlights the potential of

cardiovascular features as indicators of depression severity, while it is generally more

challenging than the classification problem, requiring further investigations on a larger

population.

5.1. Limitations of the Study and Future Work

While the research findings highlight the link between cardiovascular health and mental

well-being, there are limitations that require further investigation in future work.

This study focused solely on cardiovascular-related modalities—ECG and PPG.

Future research should incorporate additional modalities from the PRESCRIBE study,

particularly EEG and its N400 responses to psycholinguistic stimuli. PRESCRIBE

emphasized the diversity of the sensor suite and the interactions between different

modalities and the stimuli. Future studies may focus on a reduced set of wearable

sensors, allowing for a larger and more diverse participant pool across varying levels of

health and depression.

The data collection sessions in PRESCRIBE lasted a few hours. Hypothetically,

patterns of fatigue and stress, which have proven impacts on cardiac biomarkers such

as the QT interval, may differ between healthy and depressed individuals. While our

features were aggregated across the entire data collection session, in future work, we

may study and model the temporal patterns of cardiac and non-cardiac modalities used

in PRESCRIBE across healthy and depressed individuals.

While our models did not explicitly incorporate users’ interactions and responses

to the psycholinguistic stimuli, it remains unclear whether the observed results were

entirely independent of the experimental context. Factors such as the experimental

ambiance—including potential stress, cognitive load, and fatigue—may have influenced

participants’ physiological responses. This raises questions about the generalizability

of our findings beyond the controlled laboratory setting. Future research could address

this question by incorporating sham-like experimental scenarios, where control groups

are exposed to generic, neutral vignettes rather than depression-relevant stimuli. This

would help disentangle the effects of the experimental setup from intrinsic physiological

patterns associated with depression.

The inherent mismatches between BDI-II and PHQ-9 scores highlight the need for

a more objective depression assessment. This mismatch also impacts the performance

of machine learning models trained on these scores as labels. In future research, more

specific tests, such as the MINI (which was only conducted at Emory in our study) or

a psychologist’s assessment, may be used to adjudicate the disparities between BDI-II-

and PHQ-9-based labels.
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Importantly, in this work, we emphasized the “prescreening potential” of cardiac

modalities for depression rather than their use as a definitive screening tool. Although

our recruitment criteria excluded individuals with a history of cardiovascular disease,

cardiovascular biomarkers of depression can be generally confounded with other cardiac

conditions. Further investigation is needed to assess the specificity of these biomarkers

against other cardiovascular conditions or clinical conditions such as anxiety, ensuring

the generalizability of our findings.

6. Conclusion

This study demonstrates the feasibility of using cost-effective, accessible ECG and PPG

technologies for preliminary depression prescreening through heart activity-based data

collection modalities in a psycholinguistic experiment. Key predictors such as Systolic-

SD1, Pulse-SD1, and RR-SD1 are consistently linked to depression, aligning with

existing research on autonomic dysfunction. Integrating these physiological markers into

mental health assessments could enhance early detection and monitoring, particularly

in non-clinical settings.

Future research may incorporate additional physiological modalities, expand

participant diversity, and investigate the specificity of these biomarkers between

depression and cardiovascular diseases.
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Appendix A. Spectral Interpretation of Poincaré Plot Features

In Section 3.4, the general properties of Poincaré plots were discussed for a random

process xn, corresponding to any of the discussed cardiovascular time-intervals. Further

insights can be gained from a spectral perspective. Defining the zero-mean version of

xn as x̃n = xn − x̄n, a first-order autoregressive model for x̃n can be expressed as:

x̃n = ρx̃n−1 +wn and wn is zero-mean process noise independent from xn with variance

σ2
w = σ2

x(1−ρ), where σ2
x is the variance of xn and ρ is the correlation coefficient between

xn and xn−1 (as defined in Section 3.4). Therefore, the autocorrelation function of x̃n at

lag k fulfills Rx̃(k) = ρRx̃(k − 1) + σ2
wδk, or Rx̃(k) = ρ|k|σ2

x. This relationship can also
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be shown in the spectral domain:

Sx(ω) = F [Rx̃(k)] =
σ2
x(1− ρ)

1− 2ρ cos(ω) + ρ2
(A.1)

Therefore, the Poincaré features SD1 and SD2, derived in (2) are closely related to ρ

and the spectral characteristics of xn. Higher correlation coefficients result in a narrower

spectrum.

Appendix B. Depression Severity Prediction

We briefly investigated whether machine learning models could predict depression

severity scores (BDI-II and PHQ-9) from ECG- and PPG-based markers. The regression

pipeline followed the classification pipeline detailed in Section 4, with the key difference

being the optimization criterion in the grid search: instead of maximizing AUROC, we

minimized the mean squared error for the validation fold.

Table B1 presents regression performance metrics, including root mean square error

(RMSE), mean absolute error (MAE), and the Pearson correlation coefficient across all

models. For BDI-II prediction, Random Forest demonstrated the best performance in

both error metrics and correlation. It achieved an RMSE of 12.24 ± 1.51, an MAE of

10.18± 1.38, and a correlation coefficient of 0.53± 0.17. We also tested other regression

models. XGBoost showed similar performance, with only marginally higher errors than

Random Forest. SVM exhibited lower performance.

For PHQ-9 prediction, while the absolute error metrics were lower than for BDI-II,

this primarily reflected differences in scoring scales. Random Forest achieved an RMSE

of 6.31±1.42, an MAE of 5.27±1.24, and a correlation coefficient of 0.47±0.21. Notably,

correlation values were lower for PHQ-9 prediction compared to BDI-II.

Fig. B1 illustrates scatter plots of predicted versus true BDI-II and PHQ-9 scores for

Random Forest as the best model, with the identity line representing perfect prediction

and dashed lines marking clinical healthy-depressed thresholds. These plots could

be interpreted similarly to confusion matrices: points in the lower left and upper

right quadrants represented correct classifications of healthy and depressed states,

respectively, while points in the upper left and lower right quadrants indicated false

positives and false negatives. Across both BDI-II and PHQ-9 predictions, models

tended to underestimate high scores and overestimate low scores, suggesting a possible

“regression-to-the-mean” effect [55], which was more pronounced in PHQ-9 predictions.

This pattern indicated potential limitations in capturing the full range of depression

severity, particularly for extreme cases, and warrants further investigation.
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